Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Appl Toxicol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639436

ABSTRACT

Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 µM) and demonstrated the effects of BBR (10, 50, and 100 µM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.

2.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611756

ABSTRACT

Isatropolone C from Streptomyces sp. CPCC 204095 features a fused cyclopentadienone-tropolone-oxacyclohexadiene tricyclic moiety in its structure. Herein, we report an isatropolone C dimer derivative, di-isatropolone C, formed spontaneously from isatropolone C in methanol. Notably, the structure of di-isatropolone C resolved by NMR reveals a newly formed cyclopentane ring to associate the two isatropolone C monomers. The configurations of four chiral carbons, including a ketal one, in the cyclopentane ring are assigned using quantum NMR calculations and DP4+ probability. The plausible molecular mechanism for di-isatropolone C formation is proposed, in which complex dehydrogenative C-C bond coupling may have happened to connect the two isatropolone C monomers. Like isatropolone C, di-isatropolone C shows the biological activity of inducing autophagy in HepG2 cells.


Subject(s)
Autophagy , Carbon , Heterocyclic Compounds, Fused-Ring , Cyclopentanes , Ethers , Polymers
3.
Int J Biol Sci ; 19(6): 1813-1830, 2023.
Article in English | MEDLINE | ID: mdl-37063419

ABSTRACT

Damage to vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) caused by oxidized low-density lipoprotein (oxLDL) contributes to cardiovascular and cerebrovascular diseases. Protection effects of Berberine (BBR) on the cardiovascular system have been reported, however, the molecular mechanism of vascular protection is still unclear. In this study, we established two hyperlipidemia models in zebrafish and VEC-VSMC co-culture using high-cholesterol food (HCF) and oxLDL, respectively. We demonstrated that HCF doubled total cholesterol and total glyceride levels, and BBR decreased these indices in a concentration-dependent manner. Lipid staining and hematoxylin-eosin staining revealed that BBR inhibited oxLDL-induced VSMC bulge-like proliferation and migration toward VECs and prevented the HCF-induced trunk vascular obstruction in zebrafish. Immunoblot analysis, cell immunofluorescence, co-immunoprecipitation assays, and transmission electron microscopy showed that oxLDL/HCF increased lectin-like oxLDL receptor-1 (LOX-1) expression at least 5-fold and significantly inhibited autophagolysosome formation in the blood vessel cells and in zebrafish. These observations were associated with endothelial-to-mesenchymal transition (EMT) in VECs and triggered VE-cadherin ectopic expression in VSMCs, and they were responsible for aberrant VSMC migration and vascular occlusion. However, BBR, by promoting autolysosome formation and degradation of LOX-1, reversed the above events and maintained intracellular homeostasis of vessel cells and vascular integrity. In conclusion, regulation of autophagy may be an effective approach to treating oxLDL-induced cardiovascular diseases by reducing LOX-1 protein level. BBR can protect blood vessels by adjusting the oxLDL-LOX-1-EMT-autophagy axis. This study is a step toward the development of new applications of BBR.


Subject(s)
Berberine , Animals , Berberine/pharmacology , Berberine/therapeutic use , Zebrafish/metabolism , Endothelial Cells/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Autophagy/genetics , Scavenger Receptors, Class E/metabolism , Cholesterol/metabolism
4.
Toxicol Appl Pharmacol ; 469: 116529, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37100089

ABSTRACT

The most commonly reported side effect of azithromycin is gastrointestinal (GI) disorders, and the main acid degradation product is 3'-Decladinosyl azithromycin (impurity J). We aimed to compare the GI toxicity of azithromycin and impurity J on zebrafish larvae and investigate the mechanism causing the differential GI toxicity. Results of our study showed that the GI toxicity induced by impurity J was higher than that of azithromycin in zebrafish larvae, and the effects of impurity J on transcription in the digestive system of zebrafish larvae were significantly stronger than those of azithromycin. Additionally, impurity J exerts stronger cytotoxic effects on GES-1 cells than azithromycin. Simultaneously, impurity J significantly increased ghsrb levels in the zebrafish intestinal tract and ghsr levels in human GES-1 cells compared to azithromycin, and ghsr overexpression significantly reduced cell viability, indicating that GI toxicity induced by azithromycin and impurity J may be correlated with ghsr overexpression induced by the two compounds. Meanwhile, molecular docking analysis showed that the highest -CDOCKER interaction energy scores with the zebrafish GHSRb or human GHSR protein might reflect the effect of azithromycin and impurity J on the expression of zebrafish ghsrb or human ghsr. Thus, our results suggest that impurity J has higher GI toxicity than azithromycin due to its greater ability to elevate ghsrb expression in zebrafish intestinal tract.


Subject(s)
Azithromycin , Zebrafish , Animals , Humans , Azithromycin/toxicity , Larva , Molecular Docking Simulation , Intestines
5.
J Antibiot (Tokyo) ; 75(12): 702-708, 2022 12.
Article in English | MEDLINE | ID: mdl-36224376

ABSTRACT

Isatropolones/isarubrolones are Streptomyces secondary metabolites featuring a tropolone ring in the pentacyclic scaffolds of these molecules. They are able to induce complete autophagy in human HepG2 cells. Here, methyl isatropolones (1-2) and isarubrolone (3) are identified from Streptomyces CPCC 204095. They all have a methyl tropolone ring in the pentacyclic scaffold of these molecules resolved by MS and NMR spectra. Biological activity assay indicates that isatropolone Cm (1) and isarubrolone Cm (3) induce incomplete autophagy in human HepG2 cells.


Subject(s)
Streptomyces , Humans , Autophagy , Magnetic Resonance Spectroscopy , Streptomyces/metabolism , Tropolone/pharmacology , Tropolone/metabolism
6.
Front Pharmacol ; 13: 860702, 2022.
Article in English | MEDLINE | ID: mdl-35444552

ABSTRACT

Impurities in pharmaceuticals of potentially hazardous materials may cause drug safety problems. Macrolide antibiotic preparations include active pharmaceutical ingredients (APIs) and different types of impurities with similar structures, and the amount of these impurities is usually very low and difficult to be separated for toxicity evaluation. Our previous study indicated that hepatotoxicity induced by macrolides was correlated with c-fos overexpression. Here, we report an assessment of macrolide-related liver toxicity by ADMET prediction, molecular docking, structure-toxicity relationship, and experimental verification via detection of the c-fos gene expression in liver cells. The results showed that a rapid assessment model for the prediction of hepatotoxicity of macrolide antibiotics could be established by calculation of the -CDOCKER interaction energy score with the FosB/JunD bZIP domain and then confirmed by the detection of the c-fos gene expression in L02 cells. Telithromycin, a positive compound of liver toxicity, was used to verify the correctness of the model through comparative analysis of liver toxicity in zebrafish and cytotoxicity in L02 cells exposed to telithromycin and azithromycin. The prediction interval (48.1∼53.1) for quantitative hepatotoxicity in the model was calculated from the docking scores of seven macrolide antibiotics commonly used in clinics. We performed the prediction interval to virtual screening of azithromycin impurities with high hepatotoxicity and then experimentally confirmed by liver toxicity in zebrafish and c-fos gene expression. Simultaneously, we found the hepatotoxicity of azithromycin impurities may be related to the charge of nitrogen (N) atoms on the side chain group at the C5 position via structure-toxicity relationship of azithromycin impurities with different structures. This study provides a theoretical basis for improvement of the quality of macrolide antibiotics.

7.
J Nat Prod ; 85(4): 1018-1028, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35201775

ABSTRACT

Isarubrolone C is a bioactive polycyclic tropoloalkaloid from Streptomyces. Our previous study showed that isarubrolone C could trigger autophagy. Here, we report isarubrolone C potential in broad-spectrum antiviral effect and its antiviral mechanism in vitro. Our results show that isarubrolone C activated autophagy and reduced levels of viral proteins in the cells harboring HCV-CORE/NS5B, HBx, ZIKV-NS5, and HIV-RT, respectively. The role of isarubrolone C in suppression of the viral proteins was via an autophagic degradation pathway rather than a proteasome pathway. Co-immunoprecipitation assays revealed that isarubrolone C promoted both autophagy flux opening and the viral proteins being enwrapped in autolysosomes. PCR assays showed that isarubrolone C elevated the transcription levels of ATG10/ATG10S and IL28A. Further, ATG10S high expression could efficiently enhance IL28A expression and the ability of isarubrolone C to degrade the viral proteins by promoting the colocalization of viral proteins with autolysosomes. Additionally, knockdown of endogenous IL28A caused both losses of the isarubrolone C antiviral effect and autolysosome formation. These results indicate that the role of isarubrolone C antiviruses is achieved by triggering the autophagic mechanism, which is mediated by endogenous ATG10S and IL28A activation. This is the first report about isarubrolone C potential of in vitro broad-spectrum antiviruses.


Subject(s)
Alkaloids/pharmacology , Zika Virus Infection , Zika Virus , Antiviral Agents/pharmacology , Autophagy , Autophagy-Related Proteins/metabolism , Hep G2 Cells , Humans , Vesicular Transport Proteins/metabolism , Viral Proteins , Virus Replication
8.
Toxicology ; 441: 152501, 2020 08.
Article in English | MEDLINE | ID: mdl-32454074

ABSTRACT

Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections, but macrolides also expose people to the risk of adverse events include hepatotoxicity. Here, we report the liver toxicity of macrolides with different structures in zebrafish. The absorption, distribution, metabolism, excretion and toxicology (ADMET) parameters of macrolide compounds were predicted and contrasted by utilizing in silico analysis. Fluorescence imaging and Oil Red O stain assays showed all the tested macrolide drugs induced liver degeneration, changed liver size and liver steatosis in larval zebrafish. Through RNA-seq analysis, we found seven co-regulated differentially expressed genes (co-DEGs) associated with metabolism, apoptosis and immune system biological processes, and two co-regulated significant pathways including amino sugar and nucleotide sugar metabolism and apoptosis signaling pathway. We found that only fosab of seven co-DEGs was in the two co-regulated significant pathways. fosab encoded proto-oncogene c-Fos, which was closely associated with liver diseases. The whole-mount in situ hybridization showed high transcription of c-Fos induced by macrolide compounds mainly in the liver region of zebrafish larvae. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) leakage assays revealed that macrolides exerts significant cytotoxic effects on L02 cells. qRT-PCR and western blot analysis demonstrated macrolides also promoted human c-Fos expression in L02 cells. The c-Fos overexpression significantly reduced cell viability by using CCK-8 assay. These data indicate that hepatotoxicity induced by macrolides may be correlated with c-Fos expression activated by these compounds. This study may provide a biomarker for the further investigations on the mechanism of hepatotoxicity induced by macrolide drugs with different structures, and extend our understanding for improving rational clinical application of macrolides.


Subject(s)
Anti-Bacterial Agents/toxicity , Chemical and Drug Induced Liver Injury/etiology , Macrolides/toxicity , Animals , Blotting, Western , Chemical and Drug Induced Liver Injury/diagnostic imaging , Chemical and Drug Induced Liver Injury/pathology , Computer Simulation , Fatty Liver/chemically induced , Gene Expression/drug effects , Larva , Liver/diagnostic imaging , Liver/drug effects , Liver/metabolism , Liver/pathology , Luminescent Proteins/metabolism , Optical Imaging , Proto-Oncogene Mas , Real-Time Polymerase Chain Reaction , Structure-Activity Relationship , Zebrafish , Red Fluorescent Protein
9.
Autophagy ; 16(12): 2167-2179, 2020 12.
Article in English | MEDLINE | ID: mdl-31996071

ABSTRACT

IFNL2 is a potent antiviral interferon, but the regulation of its gene expression is not fully clear. Here, we report the regulation of ATG10S for IFNL2 transcription. Through sequential deletion of the IFNL2 promoter sequence, we found LP1-1, a fragment of the promoter responding to ATG10S activity. Subcellular localization and DNA immunoprecipitation assays showed ATG10S translocating into the nucleus and binding to LP1-1. Online prediction for transcription factor binding sites showed an IRF1 targeting locus in LP1-1. Luciferase assays, RT-PCR, and western blot analysis revealed a core motif (CAAGAC) existing in LP1-1, which determined ATG10S and IRF1 activity; individual nucleotide substitution showed that the functional nucleotides of ATG10S targeting were C1, A3, and C6, and the ones associated with IRF1 were A3 and G4 within the core motif. Co-immunoprecipitation assays revealed ATG10S combination with KPNA1/importin α, KPNB1/importin ß, and IRF1. The knockdown of endogenous IRF1 increased ATG10S activity on IFNL2 transcription. These results indicate that ATG10S as a transcription factor competes with IRF1 for the same binding site to promote IFNL2 gene transcription. Abbreviations: ATG10: autophagy related 10; ATG10S: the shorter isoform of autophagy related 10; BD: binding domain; CM: core motif; co-IP: co-immunoprecipitation; GFP: green fluorescent protein; HCV: hepatitis C virus; IF: immunofluorescence; IFN: interferon; IRF: interferon regulatory factor; LP: lambda promoter; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; RLU: relative light unit; SQSTM1: sequestosome 1.


Subject(s)
Autophagy-Related Proteins/metabolism , Interferon Regulatory Factor-1/metabolism , Interleukins/genetics , Transcription Factors/metabolism , Transcription, Genetic , Vesicular Transport Proteins/metabolism , Amino Acid Motifs , Base Sequence , Binding Sites , Cell Nucleus/metabolism , Green Fluorescent Proteins/metabolism , Hep G2 Cells , Humans , Interferon Regulatory Factor-1/chemistry , Interleukins/metabolism , Models, Biological , Promoter Regions, Genetic , Protein Binding , Protein Domains , Protein Isoforms/metabolism , Protein Transport , Transcriptional Activation/genetics
10.
J Nat Prod ; 82(5): 1149-1154, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31070914

ABSTRACT

Isarubrolones are bioactive polycyclic tropoloalkaloids from Streptomyces. Three new isarubrolones (2-4), together with the known isarubrolone C (1) and isatropolones A (5) and C (6, 3( R)-hydroxyisatropolone A), were identified from Streptomyces sp. CPCC 204095. The structures of these compounds were determined using a combination of mass spectrometry, 1D and 2D NMR spectroscopy, and ECD. Compounds 3 and 4 feature a pyridooxazinium unit, which is rarely seen in natural products. Compound 6 could conjugate with amino acids or amines to expand the structural diversity of isarubrolones with a pentacyclic or hexacyclic core. Importantly, 1 and 3-6 were found to induce complete autophagy.


Subject(s)
Alkaloids/isolation & purification , Autophagy/drug effects , Streptomyces/chemistry , Tropolone/isolation & purification , Alkaloids/chemistry , Alkaloids/pharmacology , Hep G2 Cells , Humans , Magnetic Resonance Spectroscopy
11.
Front Pharmacol ; 10: 1504, 2019.
Article in English | MEDLINE | ID: mdl-31969822

ABSTRACT

Background: The prevalence of non-alcohol fatty liver disease (NAFLD) is increasing in children and adolescents who are mostly resulted from overfeeding. Previous studies demonstrate that berberine (BBR), a compound derived from plant, has beneficial effects on NAFLD in adults but poorly understood in the pediatric population. This study employed a larval zebrafish model to mimic the therapeutic effects of BBR in the pediatric population and the mechanisms underlying its hepatoprotection. Methods: High-cholesterol diet (HCD)-fed zebrafish exposed to BBR at doses of 0, 1, 5, and 25 µM. After the larvae were treated with BBR for 10 days, its effect on hepatic steatosis was evaluated. We introduced Raman imaging and three-dimensional (3D) molecular imaging to detect changes in the biochemical composition and reactive oxygen species (ROS) levels of zebrafish liver. Gene expression microarray was performed to identify differentially expressed genes (DEGs) followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and functional category analysis. Results: BBR (5 and 25 µM) administration prevented HCD-induced liver lipid accumulation in larval zebrafish. The result was further confirmed by the pathological observation. Raman mapping indicated that the biochemical composition in the liver of BBR-treated group shifted to the control. The quantitative analysis of 3D imaging showed that the ROS level was significantly decreased in the liver of BBR-treated larvae. In the livers of the BBR group, we found 468 DEGs, including 172 genes with upregulated expression and 296 genes with downregulated expression. Besides, GO enrichment, KEGG pathway, and functional category analysis showed that various processes related to glucolipid metabolism, immune response, DNA damage and repair, and iron were significantly enriched with DEGs. The expression levels of the crucial genes from the functional analysis were also confirmed by quantitative PCR (qPCR). Conclusion: BBR can significantly improve hepatic steatosis in HCD-fed zebrafish larvae. Its mechanisms might be associated with the regulation of lipid metabolism, oxidative stress, and iron homeostasis. Raman imaging in larval zebrafish might become a useful tool for drug evaluation. Mainly, the gene expression profiles provide molecular information for BBR on the prevention and treatment of pediatric NAFLD.

12.
Front Immunol ; 9: 2176, 2018.
Article in English | MEDLINE | ID: mdl-30319633

ABSTRACT

Autophagy-related 10 (ATG10) is essential for autophagy since it promotes ATG5-ATG12 complex formation. Our previous study found that there are two isoforms of the ATG10 protein, ATG10 (a longer one) and ATG10S, which have identical sequences except an absence of a 36-amino acid fragment (peptide B) in ATG10S, yet exhibit distinct effects on HCV genome replication. Here, we report the existence of two amino acids, cysteine at residue 44 and 135 (Cys44 and Cys135, respectively), in ATG10 being related to differential effects of ATG10 on HCV replication and autophagy flux. Through a series of ATG10 mutation experiments and protein modeling prediction, we found that Cys44 was involved in the dual role of the two isoforms of ATG10 protein on HCV replication and autophagy flux, and that Cys135 plays similar roles as Cys44, but the disulfide bond of Cys44-Cys135 was not verified in the ATG10 protein. Further analyses by full HCV virion infection confirmed the roles of -SH of Cys44 and Cys135 on HCV replication. ATG10 with deleted or mutated Cys44 and/or Cys135 could activate expression of innate immunity-related genes, including il28a, irf-3, irf-7, and promote complete autophagy by driving autophagosomes to interact with lysosomes via IL28A-mediation. Subcellular localization assay and chromatin immunoprecipitation assay showed that ATG10 with the sulfydryl deletion or substitution of Cys44 and Cys135 could translocate into the nucleus and bind to promoter of IL28A gene; the results indicated that ATG10 with Cys44 and/or Cys135 absence might act as transcriptional factors to trigger the expression of anti-HCV immunological genes, too. In conclusion, our findings provide important information for understanding the differential roles on HCV replication and autophagy flux between ATG10 and ATG10S, and how the structure-function relationship of ATG10 transformed by a single -SH group loss on Cys44 and Cys135 in ATG10 protein, which may be a new target against HCV replication.


Subject(s)
Autophagy-Related Proteins/immunology , Autophagy/immunology , Hepacivirus/physiology , Vesicular Transport Proteins/immunology , Virus Replication/immunology , Amino Acid Substitution , Autophagy/genetics , Autophagy-Related Proteins/genetics , Cysteine/genetics , Cysteine/immunology , Hep G2 Cells , Humans , Mutation, Missense , Vesicular Transport Proteins/genetics , Virus Replication/genetics
13.
Article in English | MEDLINE | ID: mdl-29670865

ABSTRACT

Autophagy is a host mechanism for cellular homeostatic control. Intracellular stresses are symptoms of, and responses to, dysregulation of the physiological environment of the cell. Alternative gene transcription splicing is a mechanism potentially used by a host to respond to physiological or pathological challenges. Here, we aimed to confirm opposite effects of two isoforms of the human autophagy-related protein ATG10 on an HCV subgenomic replicon in zebrafish. A liver-specific HCV subreplicon model was established and exhibited several changes in gene expression typically induced by HCV infection, including overexpression of several HCV-dependent genes (argsyn, leugpcr, rasgbd, and scaf-2), as well as overexpression of several ER stress related genes (atf4, chop, atf6, and bip). Autophagy flux was blocked in the HCV model. Our results indicated that the replication of the HCV subreplicon was suppressed via a decrease in autophagosome formation caused by the autophagy inhibitor 3MA, but enhanced via dysfunction in the lysosomal degradation caused by another autophagy inhibitor CQ. Human ATG10, a canonical isoform in autophagy, facilitated the amplification of the HCV-subgenomic replicon via promoting autophagosome formation. ATG10S, a non-canonical short isoform of the ATG10 protein, promoted autophagy flux, leading to lysosomal degradation of the HCV-subgenomic replicon. Human ATG10S may therefore inhibit HCV replication, and may be an appropriate target for future antiviral drug screening.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy/genetics , Genome, Viral/genetics , Hepacivirus/genetics , Vesicular Transport Proteins/metabolism , Virus Replication/genetics , Animals , Autophagy-Related Proteins/genetics , Hepacivirus/physiology , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Vesicular Transport Proteins/genetics , Zebrafish
14.
Food Funct ; 8(4): 1475-1480, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28322382

ABSTRACT

Agaricus blazei Murill (ABM) is a common anticancer folk remedy. Its active ingredients, i.e., polysaccharides, have been isolated and exhibit indirect tumor-suppressing activity via immunological activation. The effects of polysaccharides derived from A. blazei Murill (ABMP) on RAW 264.7 cells were examined by western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). The effects of 500, 1000, and 2000 µg mL-1 ABMP on the growth of RAW 264.7 cells were evaluated by measuring the OD490 value; the optimum concentration was found to be 1000 µg mL-1. Based on the RT-PCR results, the expression levels of JNK, ERK, and p38 decreased substantially in lipopolysaccharide (LPS)-induced RAW 264.7 cells treated with ABMP. In RAW 264.7 cells treated with LPS, the protein expression levels of JNK, ERK, and p38 were decreased, as were the levels of phosphorylated JNK, ERK, and p38. These results indicate that the MAPK signal transduction pathway is a potential mechanism by which ABMP regulates the cell-mediated immunity of RAW 264.7 cells.


Subject(s)
Agaricus/chemistry , Immunity, Cellular/drug effects , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/immunology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Animals , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/immunology , Mice , RAW 264.7 Cells , Vegetables/chemistry , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology
15.
Protein Pept Lett ; 23(7): 619-25, 2016.
Article in English | MEDLINE | ID: mdl-27145928

ABSTRACT

Oxidative damage to the constituents of the eye lens is a major mechanism in the initiation and development of cataract. Lunasin, a 43-amino acids chemoprevention peptide, has been proved to possess potent anti-oxidative activity other than its established anticancer activities. Herein, we explored whether lunasin has preventative effects on d-galactose-induced experimental cataract in rat. After modeling, SD rats were administrated by instillation, 80 µM of lunasin eye drops to each eye thrice daily and consecutively for 30 days. As a result, lunasin treatment effectively inhibited the progression of d-galactose-induced experimental cataract, and protected the lenses of rats from oxidative damage and attenuated the lipid peroxidation through up-regulation of antioxidant enzymes, and inhibited the activation of polyol pathway by decreasing AR activity. Additionally, in vitro studies proved that lunasin treatment could protect human lens epithelial cells (hLECs) against d-galactose induced cell damage and apoptosis, and up-regulate antioxidant enzymes. This is the first demonstration that lunasin could inhibit d-galactose-induced experimental cataract in rats by protecting against oxidative damage and inhibiting the activation of polyol pathway.


Subject(s)
Cataract/chemically induced , Cataract/prevention & control , Galactose , Lens, Crystalline/drug effects , Protective Agents/therapeutic use , Soybean Proteins/therapeutic use , Animals , Apoptosis/drug effects , Cataract/metabolism , Cataract/pathology , Cell Line , Female , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Soybean Proteins/chemistry
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 20(3): 463-5, 2003 Sep.
Article in Chinese | MEDLINE | ID: mdl-14565014

ABSTRACT

The aim of this research report is to introduce a method of making Doxorubicin magnetic nanoparticles for tumor treatment and to evaluate its heat effect under 100 KHz magnetic field. The preparing of the nanoparticles was carried out by stirring with supersonic mixer and cold drying. The shape and diameter of the nanoparticles were observed by penetrating electron microscopy. The nanoparticles were spherical in shape, and most of them were 200 nm in diameter. The changes of the temperature under a magnetic field in agarose gel and distilled water were measured respectively. The temperature went up with the increase of the amount of nanoparticles and the magnetic field intensity. The temperature finally remained constant due to the balance of heat generation and its transfer to the surroundings. The heat transfer was faster in water in the agarose gel.


Subject(s)
Chemistry, Pharmaceutical , Doxorubicin/chemistry , Drug Compounding/methods , Magnetics , Electromagnetic Fields , Hot Temperature , Microspheres , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...